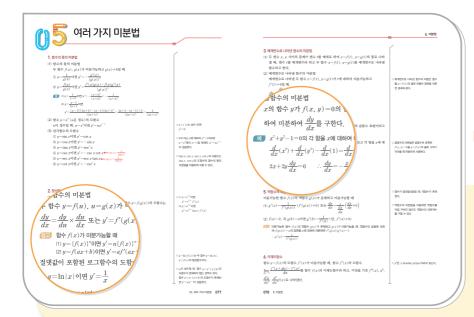
HODE TOB

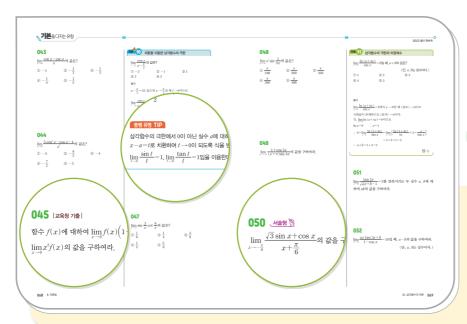
미적분

구성과 특징



▶ 교과서와 기본에 충실한개념 정리

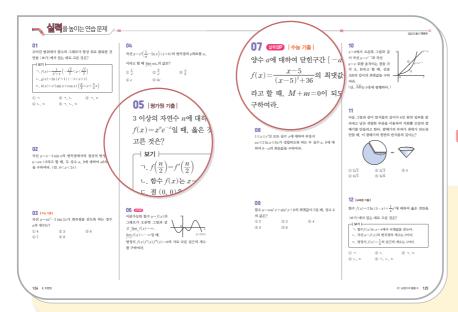
- 간결하고 이해하기 쉽게 개념 정리
- •확실한 개념 이해를 위한 참고 와 예
- •배웠던 내용을 다시 보는 선수 과목 개념



▶ 확실하게 점수를 올리는 유형 연습

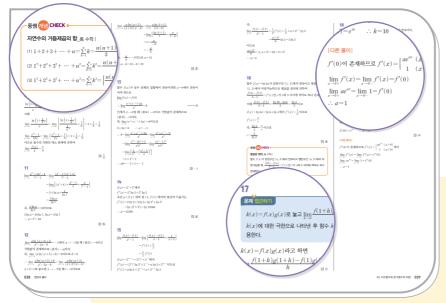
- 반드시 알아야 할 기본 유형으로 구성
- 발전 유형의 접근 방법을 제시한 품쌤 유형 TIP
- 실전에 대비할 수 있도록 철저하게 분석한 서술형 🔯 |교육청기출|

실전 유형을 조금 더 쉽고 가볍게 익히자. 확실하게 개념을 잡고, 유형을 연습해서 실력을 올려요!



● 실력을 높이는 연습 문제

- 유형 학습에 맞는 엄선된 유형 점검 문제로 구성
- 기본 유형을 발전시킨 응용 문제 실력 UP
- •실전 문제 해결력을 기르는 기출 문제



▶ 풀이 과정이 보이는 명쾌한 정답과 풀이

- 풍쌤 개념 CHECK로 지주 나오는 선수 개념 설명
- •문제의 해결력을 높이는 문제 접근하기
- 수학적 사고력을 키우는 | 다른 풀이 |

차례

Ⅰ. 수열의 극한

01. 수열의 극한	
기본을 다지는 유형	009
실력을 높이는 연습 문제	022
02. 급수	
기본을 다지는 유형	027
실력을 높이는 연습 문제	039

Ⅱ . 미분법

03. 지수함수와 로그함수의 미분	
기본을 다지는 유형	045
실력을 높이는 연습 문제	055
04. 삼각함수의 미분	
기본을 다지는 유형	059
실력을 높이는 연습 문제	073
05. 여러 가지 미분법	
기본을 다지는 유형	079
실력을 높이는 연습 문제	089

06. 도함수의 활용 (1)

기본을 다지는 유형	094
실력을 높이는 연습 문제	106
07. 도함수의 활용 (2)	
기본을 다지는 유형	112
실력을 높이는 연습 문제	124

Ⅲ. 적분법

08. 여러 가지 적분법

실력을 높이는 연습 문제

기본을 다지는 유형	129
실력을 높이는 연습 문제	139
09. 정적분	
기본을 다지는 유형	144
실력을 높이는 연습 문제	156
10. 정적분의 활용	
기본을 다지는 유형	162

174

풍산자 라이트유형

실력을 다지는 유형 집중 학습에 적합한 구성

- 개념을 바로 적용할 수 있는 연산 문제 및 기출 문제의 기본 유형 제시
- 기본 유형을 충분히 연습할 수 있도록 일반 유형서의 유형을 세분화

2 최신 경향 분석으로 내신과 학력평가 대비

- 내신과 학력 평가 등 최신 경향을 분석하여 출제 빈도 높은 문제들로 구성
- 출제 빈도 높은 서술형 문제 제시로 서술형 평가 대비에 적합
- 최신 기출 문제 연습으로 실전 감각을 키우고 자신감을 높임

중상위권 도약을 위한 최적의 유형 연습용 교재

- 깔끔하지만 부족함이 없는 개념 설명과 유형 연습에 적합한 세분화된 유형 분류
- 문제 출제 원리에 부합한 유형과 문제해결 TIP으로 문제 적용력과 해결력 강화

매일 매순간 나아가는 사람이 진정한 승자가 된다.

수열의 극한

01. 수열의 극한

02. 급수

수열의 극한

1 수열의 수렴과 발산

(1) 수열의 수렴: 수열 $\{a_n\}$ 에서 n의 값이 한없이 커질 때, a_n 의 값이 일정한 값 α 에 한없이 가까워지면 수열 $\{a_n\}$ 은 α 에 수렴한다고 한다. 이때 α 를 수열 $\{a_n\}$ 의 극한 값 또는 극한이라고 한다.

 $\lim a_n = \alpha$ 또는 $n \to \infty$ 일 때 $a_n \to \alpha$

(2) 수열의 발산: 수열 $\{a_n\}$ 이 수렴하지 않을 때, 수열 $\{a_n\}$ 은 발산한다고 한다.

① 양의 무한대로 발산 \Rightarrow $\lim a_n = \infty$

 $\hookrightarrow a_n$ 의 값이 한없이 커지는 상태

② 음의 무한대로 발산 ightharpoonup $\lim a_n = -\infty$

 $\hookrightarrow a_n$ 의 값이 음수이면서 그 절댓값이 한없이 커지는 상태

 $\stackrel{--}{
ightarrow}$ 수렴하지도 않고 양의 무한대나 음의 무한대로 발산하지도 않는 경우

2. 수열의 극한에 대한 기본 성질

두 수열 $\{a_n\}$, $\{b_n\}$ 이 모두 수렴할 때

- (1) $\lim ca_n = c \lim a_n$ (단, c는 상수이다.)
- (2) $\lim (a_n+b_n) = \lim a_n + \lim b_n$
- $(3) \lim (a_n b_n) = \lim a_n \lim b_n$
- (4) $\lim a_n b_n = \lim a_n \lim b_n$
- (5) $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim b_n}$ (단, $b_n \neq 0$, $\lim_{n\to\infty} b_n \neq 0$)

3. 수열의 극한값의 계산

- (1) $\frac{\infty}{\infty}$ 꼴: 분모의 최고차항으로 분자, 분모를 각각 나눈다.
- (2) ∞ − ∞ 꼴
 - ① 다항식은 최고차항으로 묶는다.
 - ② 무리식을 포함한 경우에는 근호가 있는 부분을 유리화한다.

 $\frac{\infty}{\infty}$ \neq 1, $\infty - \infty \neq$ 0임에 주의한다.

4. 수열의 극한의 대소 관계

두 수열 $\{a_n\}$, $\{b_n\}$ 이 모두 수렴하고 $\lim a_n=\alpha$, $\lim b_n=\beta$ $(\alpha, \beta$ 는 실수)일 때

- (1) 모든 자연수 n에 대하여 $a_n \le b_n$ 이면 $\alpha \le \beta$ 이다.
- (2) 수열 $\{c_n\}$ 이 모든 자연수 n에 대하여 $a_n \le c_n \le b_n$ 이고 $\alpha = \beta$ 이면 $\lim c_n = \alpha$ 이다.

5. 등비수열의 수렴과 발산

등비수열 $\{\gamma^n\}$ 에서

- (1) r>1일 때, $\lim r^n = \infty$ (발산) (2) r=1일 때, $\lim r^n = 1$ (수렴)
- (3) -1 < r < 1일 때, $\lim r^n = 0$ (수렴) (4) $r \le -1$ 일 때, $\{r^n\}$ 은 진동 (발산)

- 이 작아지는 상태를 나타내는 기호이지 수가 아니다.
- \bigcirc 수열 $\{a_n\}$ 에서 모든 자연수 n에 대하여 $a_n = c (c 는 상수) 일 때,$ $\lim a_n = \lim c = c$

○ 수열의 극한에 대한 기본 성질은 두 수열 $\{a_n\}$, $\{b_n\}$ 이 모두 수렴할 때에만 성립 함에 유의한다.

- (1) (분자의 차수)=(분모의 차수)
 - ➡ 극한값은 최고차항의 계수의 비
- (2) (분자의 차수) < (분모의 차수)
 - ⇒ 극한값은 0
- (3) (분자의 차수) > (분모의 차수)
 - ➡ ∞ 또는 -∞로 발산
- \bigcirc 두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $a_n < b_n$ 이 라고 해서 반드시 $\lim a_n < \lim b_n$ 이 성립하는 것은 아니다. $a_n < b_n$ 이지만 $\lim a_n = \lim b_n$ 인 경우 가 있다.

○ 등비수열의 수렴 조건

- (1) 등비수열 $\{r^n\}$ 이 수렴하기 위한 조건 \Rightarrow -1<r<1
- (2) 등비수열 $\{ar^{n-1}\}$ 이 수렴하기 위한 조건 \Rightarrow a=0 또는 $-1 < r \le 1$

유형 이 수염의 수염과 발산

다음 수열 중 수렴하는 것을 모두 고르면? (정답 2개)

- ① 3, 2, 3, 2, 3, 2, ...
- ② 1, 2, 4, 8, \cdots , 2^{n-1} , \cdots

$$3 - \frac{1}{2}, 3 - \frac{1}{4}, 3 - \frac{1}{6}, \dots, 3 - \frac{1}{2n}, \dots$$

$$4\frac{1}{100}, -\frac{2}{100}, -\frac{7}{100}, -\frac{14}{100}, \cdots, \frac{2-n^2}{100}, \cdots$$

$$\textcircled{5}$$
 1, $-\frac{1}{3}$, $\frac{1}{9}$, $-\frac{1}{27}$, ..., $\left(-\frac{1}{3}\right)^{n-1}$, ...

- ① 주어진 수열은 진동한다. 즉, 발산한다.
- ② n의 값이 한없이 커지면 2^{n-1} 의 값도 한없이 커지므로 주어 진 수열은 양의 무한대로 발산한다.
- ③ n의 값이 한없이 커지면 $3 \frac{1}{2n}$ 의 값은 3에 한없이 가까
- 위지므로 주어진 수열은 3에 수렴한다. $\frac{1}{50} \frac{n^2}{100}$ ④ n의 값이 한없이 커지면 $\frac{2-n^2}{100}$ 의 값은 음수이면서 그 절 댓값이 한없이 커지므로 주어진 수열은 음의 무한대로 발산 한다
- ⑤ 홀수 번째 항 $1, \frac{1}{9}, \frac{1}{81}, \cdots$ 은 0에 수렴하고, 짝수 번째 항 $-\frac{1}{3}$, $-\frac{1}{27}$, $-\frac{1}{243}$, …도 0에 수렴하므로 주어진 수열은 0에 수렴한다.

001

다음 수열의 수렴과 발산을 조사하고, 수렴하면 그 극 한값을 구하여라.

(1) 1,
$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{1}{4}$, ..., $\frac{1}{n}$, ...

- (2) 1, -1, 1, -1, ..., $(-1)^{n-1}$, ...
- (3) 4, 4, 4, 4, 4, 4, ...

(4)
$$2, \frac{5}{2}, \frac{10}{3}, \frac{17}{4}, \dots, \frac{n^2+1}{n}, \dots$$

(5) 5, 3, 1,
$$-1$$
, ..., $-2n+7$, ...

002

다음 수열 중 수렴하는 것은?

①
$$\{3n-1\}$$

$$4\left\{\frac{n^2-4}{n+1}\right\}$$
 $5\left\{\frac{(-1)^n}{5n}\right\}$

$$5 \left\{ \frac{(-1)^n}{5n} \right\}$$

003

발산하는 수열인 것만을 |보기|에서 있는 대로 고른 것

$$\{-n^2+5\}$$

$$\vdash \cdot \left\{ \frac{6n-1}{n} \right\}$$

004

수렴하는 수열인 것만을 |보기|에서 있는 대로 고르고. 그 극한값을 구하여라.

$$\neg \cdot \left\{ \frac{3}{n^2 + 2} \right\}$$

$$\neg. \left\{ \frac{3}{n^2+2} \right\} \qquad \qquad \vdash. \left\{ \sin \frac{4n-1}{2} \pi \right\}$$

$$= \left[\left(-\frac{4}{3} \right)^n \right]$$

$$= \left[\left\{ 10 - 9n \right\} \right]$$

$$=. \{10-9n$$

유형 02 수열의 극한에 대한 기본 성질

두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\lim_{n\to\infty}a_n=-3$, $\lim_{n\to\infty}b_n=4$ 일 때, $\lim_{n\to\infty}\frac{-2a_n+b_n}{a_nb_n+7}$ 의 값을 구하여라.

풀이

$$\lim_{n \to \infty} \frac{-2a_n + b_n}{a_n b_n + 7} = \frac{-2\lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n}{\lim_{n \to \infty} a_n \lim_{n \to \infty} b_n + \lim_{n \to \infty} 7}$$
$$= \frac{-2 \times (-3) + 4}{-3 \times 4 + 7} = -2$$

 $\mathbf{E} - 2$

005

두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\lim_{n\to\infty}a_n=2$, $\lim_{n\to\infty}b_n=-1$ 일 때, 다음 극한값을 구하여라.

- (1) $\lim (a_n + b_n)$
- (2) $\lim (3a_n 2b_n)$
- (3) $\lim 5a_n b_n$
- $(4) \lim_{n \to \infty} \frac{-4a_n}{b_n + 6}$

006

다음 극한값을 구하여라.

$$(1) \lim_{n \to \infty} \left(6 + \frac{1}{n} \right)$$

$$(2) \lim_{n \to \infty} \left(\frac{4}{n} - \frac{5}{n^2} \right)$$

(3)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right) \left(8 - \frac{2}{n} \right)$$

(4)
$$\lim_{n \to \infty} \frac{12 + \frac{7}{n} + \frac{2}{n^2}}{3 - \frac{1}{n^2}}$$

007 |교육청 기출|

수렴하는 수열 $\{a_n\}$ 에 대하여 $\lim_{n\to\infty}\frac{4a_n+3}{2-a_n}=2$ 일 때,

 $\lim a_n$ 의 값은?

- $4\frac{1}{5}$ $5\frac{1}{4}$

008

수열 $\{a_n\}$ 에 대하여 $\lim_{n \to \infty} (a_n+2)=5$ 일 때, $\lim a_n(a_n-1)$ 의 값을 구하여라.

009

두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여

$$a_n = 3 + \frac{1}{n}, b_n = \frac{8}{n(n+2)} - 2$$

일 때, $\lim_{n \to \infty} (3a_n - 2)(7b_n + 4)$ 의 값을 구하여라.

수렴하는 두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\lim_{n\to\infty}(a_n+b_n)=9$, $\lim_{n\to\infty}a_nb_n=3$

일 때, $\lim_{n\to\infty} (a_n^2 + b_n^2)$ 의 값을 구하여라.

011

수렴하는 두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\lim_{n\to\infty} (2a_n-3b_n)=10, \lim_{n\to\infty} (6a_n+5b_n)=2$

일 때, $\lim_{n\to\infty}\frac{b_n}{a_n}$ 의 값은?

- ① -3
- () -2
- $^{\circ}$ -1
- **4** 1
- (5) 2

012

수렴하는 수열 $\{a_n\}$ 에 대하여 $\lim_{n\to\infty}\frac{3a_{n+1}-1}{a_n+2}=2$ 일 때, $\lim_{n\to\infty}a_n$ 의 값을 구하여라.

유형 03 <u>∞</u> 꼴의 극한

 $\lim_{n\to\infty}rac{an^2+bn+8}{4n+1}=$ 3일 때, a+b의 값은?

(단, a, b는 상수이다.)

- ① 8
- 29
- ③ 10

- **4** 11
- © 12

푹이

$$a \neq 0$$
이면 $\lim_{n \to \infty} \frac{an^2 + bn + 8}{4n + 1} = \infty \; (또는 -\infty)$ 이므로

a=0

$$\lim_{n\to\infty} \frac{an^2 + bn + 8}{4n + 1} = \lim_{n\to\infty} \frac{bn + 8}{4n + 1}$$

$$= \lim_{n\to\infty} \frac{b + \frac{8}{n}}{4 + \frac{1}{n}} = \frac{b}{4}$$

즉,
$$\frac{b}{4}$$
=3이므로 b =12

$$\therefore a+b=12$$

말 (5)

013

다음 극한을 조사하고, 극한이 존재하면 그 극한값을 구하여라.

$$(1)\lim_{n\to\infty}\frac{-2n+1}{n-6}$$

(2)
$$\lim_{n \to \infty} \frac{n^2 - 4n + 11}{2n + 5}$$

(3)
$$\lim_{n \to \infty} \frac{3n+10}{n^2+n-7}$$

(4)
$$\lim_{n \to \infty} \frac{n^2 + 2n - 3}{9n^2 - 1}$$

(5)
$$\lim_{n \to \infty} \frac{-8n^3 + 5}{n^2 - 6n}$$